Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolutionary Robust Clustering Over Time for Temporal Data (2106.07252v1)

Published 14 Jun 2021 in cs.NE

Abstract: In many clustering scenes, data samples' attribute values change over time. For such data, we are often interested in obtaining a partition for each time step and tracking the dynamic change of partitions. Normally, a smooth change is assumed for data to have a temporal smooth nature. Existing algorithms consider the temporal smoothness as an a priori preference and bias the search towards the preferred direction. This a priori manner leads to a risk of converging to an unexpected region because it is not always the case that a reasonable preference can be elicited given the little prior knowledge about the data. To address this issue, this paper proposes a new clustering framework called evolutionary robust clustering over time. One significant innovation of the proposed framework is processing the temporal smoothness in an a posteriori manner, which avoids unexpected convergence that occurs in existing algorithms. Furthermore, the proposed framework automatically tunes the weight of smoothness without data's affinity matrix and predefined parameters, which holds better applicability and scalability. The effectiveness and efficiency of the proposed framework are confirmed by comparing with state-of-the-art algorithms on both synthetic and real datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.