Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Hashing with Hash Center Update for Efficient Image Retrieval (2106.06269v1)

Published 11 Jun 2021 in eess.IV

Abstract: In this paper, we propose an approach for learning binary hash codes for image retrieval. Canonical Correlation Analysis (CCA) is used to design two loss functions for training a neural network such that the correlation between the two views to CCA is maximized. The first loss, maximizes the correlation between the hash centers and learned hash codes. The second loss maximizes the correlation between the class labels and classification scores. A novel weighted mean and thresholding based hash center update scheme is proposed for adapting the hash centers in each epoch. The training loss reaches the theoretical lower bound of the proposed loss functions, showing that the correlation coefficients are maximized during training and substantiating the formation of an efficient feature space for image retrieval. The measured mean average precision shows that the proposed approach outperforms other state-of-the-art approaches in both single-labeled and multi-labeled image datasets.

Citations (10)

Summary

We haven't generated a summary for this paper yet.