Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedNLP: An interpretable NLP System to Decode Federal Reserve Communications (2106.06247v1)

Published 11 Jun 2021 in cs.CL and cs.AI

Abstract: The Federal Reserve System (the Fed) plays a significant role in affecting monetary policy and financial conditions worldwide. Although it is important to analyse the Fed's communications to extract useful information, it is generally long-form and complex due to the ambiguous and esoteric nature of content. In this paper, we present FedNLP, an interpretable multi-component Natural Language Processing system to decode Federal Reserve communications. This system is designed for end-users to explore how NLP techniques can assist their holistic understanding of the Fed's communications with NO coding. Behind the scenes, FedNLP uses multiple NLP models from traditional machine learning algorithms to deep neural network architectures in each downstream task. The demonstration shows multiple results at once including sentiment analysis, summary of the document, prediction of the Federal Funds Rate movement and visualization for interpreting the prediction model's result.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com