Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scientometric engineering: Exploring citation dynamics via arXiv eprints (2106.05027v2)

Published 9 Jun 2021 in cs.DL, cs.CY, cs.SI, physics.soc-ph, and stat.AP

Abstract: Scholarly communications have been rapidly integrated into digitised and networked open ecosystems, where preprint servers have played a pivotal role in accelerating the knowledge transfer processes. However, quantitative evidence is scarce regarding how this paradigm shift beyond the traditional journal publication system has affected the dynamics of collective attention on science. To address this issue, we investigate the citation data of more than 1.5 million eprints on arXiv (https://arxiv.org/) and analyse the long-term citation trend for each discipline involved. We find that the typical growth and obsolescence patterns vary across disciplines, reflecting different publication and communication practices. The results provide unique evidence on the attention dynamics shaped by the research community today, including the dramatic growth and fast obsolescence of Computer Science eprints, which has not been captured in previous studies relying on the citation data of journal papers. Subsequently, we develop a quantitatively-and-temporally normalised citation index with an approximately normal distribution, which is useful for comparing citational attention across disciplines and time periods. Further, we derive a stochastic model consistent with the observed quantitative and temporal characteristics of citation growth and obsolescence. The findings and the developed framework open a new avenue for understanding the nature of citation dynamics.

Citations (7)

Summary

We haven't generated a summary for this paper yet.