Papers
Topics
Authors
Recent
2000 character limit reached

A gradient based resolution strategy for a PDE-constrained optimization approach for 3D-1D coupled problems

Published 9 Jun 2021 in math.NA and cs.NA | (2106.04890v1)

Abstract: Coupled 3D-1D problems arise in many practical applications, in an attempt to reduce the computational burden in simulations where cylindrical inclusions with a small section are embedded in a much larger domain. Nonetheless the resolution of such problems can be non trivial, both from a mathematical and a geometrical standpoint. Indeed 3D-1D coupling requires to operate in non standard function spaces, and, also, simulation geometries can be complex for the presence of multiple intersecting domains. Recently, a PDE-constrained optimization based formulation has been proposed for such problems, proving a well posed mathematical formulation and allowing for the use of non conforming meshes for the discrete problem. Here an unconstrained optimization formulation of the problem is derived and an efficient gradient based solver is proposed for such formulation. Some numerical tests on quite complex configurations are discussed to show the viability of the method.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.