Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis and approximation of mixed-dimensional PDEs on 3D-1D domains coupled with Lagrange multipliers (2004.02722v1)

Published 6 Apr 2020 in math.NA and cs.NA

Abstract: Coupled partial differential equations defined on domains with different dimensionality are usually called mixed dimensional PDEs. We address mixed dimensional PDEs on three-dimensional (3D) and one-dimensional domains, giving rise to a 3D-1D coupled problem. Such problem poses several challenges from the standpoint of existence of solutions and numerical approximation. For the coupling conditions across dimensions, we consider the combination of essential and natural conditions, basically the combination of Dirichlet and Neumann conditions. To ensure a meaningful formulation of such conditions, we use the Lagrange multiplier method, suitably adapted to the mixed dimensional case. The well posedness of the resulting saddle point problem is analyzed. Then, we address the numerical approximation of the problem in the framework of the finite element method. The discretization of the Lagrange multiplier space is the main challenge. Several options are proposed, analyzed and compared, with the purpose to determine a good balance between the mathematical properties of the discrete problem and flexibility of implementation of the numerical scheme. The results are supported by evidence based on numerical experiments.

Citations (27)

Summary

We haven't generated a summary for this paper yet.