Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Evolution of Neuron Communities in a Deep Learning Architecture

Published 8 Jun 2021 in cs.LG, cs.IT, cs.NE, and math.IT | (2106.04693v2)

Abstract: Deep learning techniques are increasingly being adopted for classification tasks over the past decade, yet explaining how deep learning architectures can achieve state-of-the-art performance is still an elusive goal. While all the training information is embedded deeply in a trained model, we still do not understand much about its performance by only analyzing the model. This paper examines the neuron activation patterns of deep learning-based classification models and explores whether the models' performances can be explained through neurons' activation behavior. We propose two approaches: one that models neurons' activation behavior as a graph and examines whether the neurons form meaningful communities, and the other examines the predictability of neurons' behavior using entropy. Our comprehensive experimental study reveals that both the community quality and entropy can provide new insights into the deep learning models' performances, thus paves a novel way of explaining deep learning models directly from the neurons' activation pattern.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.