Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pre-trained Language Model for Web-scale Retrieval in Baidu Search (2106.03373v4)

Published 7 Jun 2021 in cs.IR

Abstract: Retrieval is a crucial stage in web search that identifies a small set of query-relevant candidates from a billion-scale corpus. Discovering more semantically-related candidates in the retrieval stage is very promising to expose more high-quality results to the end users. However, it still remains non-trivial challenges of building and deploying effective retrieval models for semantic matching in real search engine. In this paper, we describe the retrieval system that we developed and deployed in Baidu Search. The system exploits the recent state-of-the-art Chinese pretrained LLM, namely Enhanced Representation through kNowledge IntEgration (ERNIE), which facilitates the system with expressive semantic matching. In particular, we developed an ERNIE-based retrieval model, which is equipped with 1) expressive Transformer-based semantic encoders, and 2) a comprehensive multi-stage training paradigm. More importantly, we present a practical system workflow for deploying the model in web-scale retrieval. Eventually, the system is fully deployed into production, where rigorous offline and online experiments were conducted. The results show that the system can perform high-quality candidate retrieval, especially for those tail queries with uncommon demands. Overall, the new retrieval system facilitated by pretrained LLM (i.e., ERNIE) can largely improve the usability and applicability of our search engine.

Citations (69)

Summary

We haven't generated a summary for this paper yet.