Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understand and Improve Contrastive Learning Methods for Visual Representation: A Review (2106.03259v1)

Published 6 Jun 2021 in cs.LG and cs.CV

Abstract: Traditional supervised learning methods are hitting a bottleneck because of their dependency on expensive manually labeled data and their weaknesses such as limited generalization ability and vulnerability to adversarial attacks. A promising alternative, self-supervised learning, as a type of unsupervised learning, has gained popularity because of its potential to learn effective data representations without manual labeling. Among self-supervised learning algorithms, contrastive learning has achieved state-of-the-art performance in several fields of research. This literature review aims to provide an up-to-date analysis of the efforts of researchers to understand the key components and the limitations of self-supervised learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ran Liu (70 papers)
Citations (12)