Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Tangent Kernel Maximum Mean Discrepancy (2106.03227v2)

Published 6 Jun 2021 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We present a novel neural network Maximum Mean Discrepancy (MMD) statistic by identifying a new connection between neural tangent kernel (NTK) and MMD. This connection enables us to develop a computationally efficient and memory-efficient approach to compute the MMD statistic and perform NTK based two-sample tests towards addressing the long-standing challenge of memory and computational complexity of the MMD statistic, which is essential for online implementation to assimilating new samples. Theoretically, such a connection allows us to understand the NTK test statistic properties, such as the Type-I error and testing power for performing the two-sample test, by adapting existing theories for kernel MMD. Numerical experiments on synthetic and real-world datasets validate the theory and demonstrate the effectiveness of the proposed NTK-MMD statistic.

Citations (18)

Summary

We haven't generated a summary for this paper yet.