Papers
Topics
Authors
Recent
2000 character limit reached

Robust Model Selection and Nearly-Proper Learning for GMMs

Published 5 Jun 2021 in cs.DS, cs.LG, math.ST, stat.ML, and stat.TH | (2106.02774v2)

Abstract: In learning theory, a standard assumption is that the data is generated from a finite mixture model. But what happens when the number of components is not known in advance? The problem of estimating the number of components, also called model selection, is important in its own right but there are essentially no known efficient algorithms with provable guarantees let alone ones that can tolerate adversarial corruptions. In this work, we study the problem of robust model selection for univariate Gaussian mixture models (GMMs). Given $\textsf{poly}(k/\epsilon)$ samples from a distribution that is $\epsilon$-close in TV distance to a GMM with $k$ components, we can construct a GMM with $\widetilde{O}(k)$ components that approximates the distribution to within $\widetilde{O}(\epsilon)$ in $\textsf{poly}(k/\epsilon)$ time. Thus we are able to approximately determine the minimum number of components needed to fit the distribution within a logarithmic factor. Prior to our work, the only known algorithms for learning arbitrary univariate GMMs either output significantly more than $k$ components (e.g. $k/\epsilon2$ components for kernel density estimates) or run in time exponential in $k$. Moreover, by adapting our techniques we obtain similar results for reconstructing Fourier-sparse signals.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.