Papers
Topics
Authors
Recent
Search
2000 character limit reached

Laplacian-Based Dimensionality Reduction Including Spectral Clustering, Laplacian Eigenmap, Locality Preserving Projection, Graph Embedding, and Diffusion Map: Tutorial and Survey

Published 3 Jun 2021 in stat.ML, cs.CV, and cs.LG | (2106.02154v2)

Abstract: This is a tutorial and survey paper for nonlinear dimensionality and feature extraction methods which are based on the Laplacian of graph of data. We first introduce adjacency matrix, definition of Laplacian matrix, and the interpretation of Laplacian. Then, we cover the cuts of graph and spectral clustering which applies clustering in a subspace of data. Different optimization variants of Laplacian eigenmap and its out-of-sample extension are explained. Thereafter, we introduce the locality preserving projection and its kernel variant as linear special cases of Laplacian eigenmap. Versions of graph embedding are then explained which are generalized versions of Laplacian eigenmap and locality preserving projection. Finally, diffusion map is introduced which is a method based on Laplacian of data and random walks on the data graph.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.