Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum Laplacian Eigenmap

Published 2 Nov 2016 in quant-ph and cs.LG | (1611.00760v1)

Abstract: Laplacian eigenmap algorithm is a typical nonlinear model for dimensionality reduction in classical machine learning. We propose an efficient quantum Laplacian eigenmap algorithm to exponentially speed up the original counterparts. In our work, we demonstrate that the Hermitian chain product proposed in quantum linear discriminant analysis (arXiv:1510.00113,2015) can be applied to implement quantum Laplacian eigenmap algorithm. While classical Laplacian eigenmap algorithm requires polynomial time to solve the eigenvector problem, our algorithm is able to exponentially speed up nonlinear dimensionality reduction.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.