Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Syntax-augmented Multilingual BERT for Cross-lingual Transfer (2106.02134v1)

Published 3 Jun 2021 in cs.CL

Abstract: In recent years, we have seen a colossal effort in pre-training multilingual text encoders using large-scale corpora in many languages to facilitate cross-lingual transfer learning. However, due to typological differences across languages, the cross-lingual transfer is challenging. Nevertheless, language syntax, e.g., syntactic dependencies, can bridge the typological gap. Previous works have shown that pre-trained multilingual encoders, such as mBERT \cite{devlin-etal-2019-bert}, capture language syntax, helping cross-lingual transfer. This work shows that explicitly providing language syntax and training mBERT using an auxiliary objective to encode the universal dependency tree structure helps cross-lingual transfer. We perform rigorous experiments on four NLP tasks, including text classification, question answering, named entity recognition, and task-oriented semantic parsing. The experiment results show that syntax-augmented mBERT improves cross-lingual transfer on popular benchmarks, such as PAWS-X and MLQA, by 1.4 and 1.6 points on average across all languages. In the \emph{generalized} transfer setting, the performance boosted significantly, with 3.9 and 3.1 points on average in PAWS-X and MLQA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wasi Uddin Ahmad (41 papers)
  2. Haoran Li (166 papers)
  3. Kai-Wei Chang (292 papers)
  4. Yashar Mehdad (37 papers)
Citations (34)