Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discriminative Reasoning for Document-level Relation Extraction (2106.01562v1)

Published 3 Jun 2021 in cs.CL

Abstract: Document-level relation extraction (DocRE) models generally use graph networks to implicitly model the reasoning skill (i.e., pattern recognition, logical reasoning, coreference reasoning, etc.) related to the relation between one entity pair in a document. In this paper, we propose a novel discriminative reasoning framework to explicitly model the paths of these reasoning skills between each entity pair in this document. Thus, a discriminative reasoning network is designed to estimate the relation probability distribution of different reasoning paths based on the constructed graph and vectorized document contexts for each entity pair, thereby recognizing their relation. Experimental results show that our method outperforms the previous state-of-the-art performance on the large-scale DocRE dataset. The code is publicly available at https://github.com/xwjim/DRN.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wang Xu (16 papers)
  2. Kehai Chen (59 papers)
  3. Tiejun Zhao (70 papers)
Citations (58)