Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Ensemble optimized algorithm based on Genetic Programming for imbalanced data classification (2106.01176v1)

Published 2 Jun 2021 in cs.LG and cs.NE

Abstract: One of the most significant current discussions in the field of data mining is classifying imbalanced data. In recent years, several ways are proposed such as algorithm level (internal) approaches, data level (external) techniques, and cost-sensitive methods. Although extensive research has been carried out on imbalanced data classification, however, several unsolved challenges remain such as no attention to the importance of samples to balance, determine the appropriate number of classifiers, and no optimization of classifiers in the combination of classifiers. The purpose of this paper is to improve the efficiency of the ensemble method in the sampling of training data sets, especially in the minority class, and to determine better basic classifiers for combining classifiers than existing methods. We proposed a hybrid ensemble algorithm based on Genetic Programming (GP) for two classes of imbalanced data classification. In this study uses historical data from UCI Machine Learning Repository to assess minority classes in imbalanced datasets. The performance of our proposed algorithm is evaluated by Rapid-miner studio v.7.5. Experimental results show the performance of the proposed method on the specified data sets in the size of the training set shows 40% and 50% better accuracy than other dimensions of the minority class prediction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (1)

Summary

We haven't generated a summary for this paper yet.