Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hi-Transformer: Hierarchical Interactive Transformer for Efficient and Effective Long Document Modeling

Published 2 Jun 2021 in cs.CL | (2106.01040v3)

Abstract: Transformer is important for text modeling. However, it has difficulty in handling long documents due to the quadratic complexity with input text length. In order to handle this problem, we propose a hierarchical interactive Transformer (Hi-Transformer) for efficient and effective long document modeling. Hi-Transformer models documents in a hierarchical way, i.e., first learns sentence representations and then learns document representations. It can effectively reduce the complexity and meanwhile capture global document context in the modeling of each sentence. More specifically, we first use a sentence Transformer to learn the representations of each sentence. Then we use a document Transformer to model the global document context from these sentence representations. Next, we use another sentence Transformer to enhance sentence modeling using the global document context. Finally, we use hierarchical pooling method to obtain document embedding. Extensive experiments on three benchmark datasets validate the efficiency and effectiveness of Hi-Transformer in long document modeling.

Citations (58)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.