Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ATRIA: A Bit-Parallel Stochastic Arithmetic Based Accelerator for In-DRAM CNN Processing (2105.12781v1)

Published 26 May 2021 in cs.AR, cs.AI, cs.LG, and cs.NE

Abstract: With the rapidly growing use of Convolutional Neural Networks (CNNs) in real-world applications related to machine learning and AI, several hardware accelerator designs for CNN inference and training have been proposed recently. In this paper, we present ATRIA, a novel bit-pArallel sTochastic aRithmetic based In-DRAM Accelerator for energy-efficient and high-speed inference of CNNs. ATRIA employs light-weight modifications in DRAM cell arrays to implement bit-parallel stochastic arithmetic based acceleration of multiply-accumulate (MAC) operations inside DRAM. ATRIA significantly improves the latency, throughput, and efficiency of processing CNN inferences by performing 16 MAC operations in only five consecutive memory operation cycles. We mapped the inference tasks of four benchmark CNNs on ATRIA to compare its performance with five state-of-the-art in-DRAM CNN accelerators from prior work. The results of our analysis show that ATRIA exhibits only 3.5% drop in CNN inference accuracy and still achieves improvements of up to 3.2x in frames-per-second (FPS) and up to 10x in efficiency (FPS/W/mm2), compared to the best-performing in-DRAM accelerator from prior work.

Citations (5)

Summary

We haven't generated a summary for this paper yet.