Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generation of COVID-19 Chest CT Scan Images using Generative Adversarial Networks (2105.11241v1)

Published 20 May 2021 in eess.IV, cs.CV, and cs.LG

Abstract: SARS-CoV-2, also known as COVID-19 or Coronavirus, is a viral contagious disease that is infected by a novel coronavirus, and has been rapidly spreading across the globe. It is very important to test and isolate people to reduce spread, and from here comes the need to do this quickly and efficiently. According to some studies, Chest-CT outperforms RT-PCR lab testing, which is the current standard, when diagnosing COVID-19 patients. Due to this, computer vision researchers have developed various deep learning systems that can predict COVID-19 using a Chest-CT scan correctly to a certain degree. The accuracy of these systems is limited since deep learning neural networks such as CNNs (Convolutional Neural Networks) need a significantly large quantity of data for training in order to produce good quality results. Since the disease is relatively recent and more focus has been on CXR (Chest XRay) images, the available chest CT Scan image dataset is much less. We propose a method, by utilizing GANs, to generate synthetic chest CT images of both positive and negative COVID-19 patients. Using a pre-built predictive model, we concluded that around 40% of the generated images are correctly predicted as COVID-19 positive. The dataset thus generated can be used to train a CNN-based classifier which can help determine COVID-19 in a patient with greater accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Prerak Mann (1 paper)
  2. Sahaj Jain (3 papers)
  3. Saurabh Mittal (10 papers)
  4. Aruna Bhat (1 paper)
Citations (11)