Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
135 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

A Probabilistic Approach to Neural Network Pruning (2105.10065v1)

Published 20 May 2021 in cs.LG

Abstract: Neural network pruning techniques reduce the number of parameters without compromising predicting ability of a network. Many algorithms have been developed for pruning both over-parameterized fully-connected networks (FCNs) and convolutional neural networks (CNNs), but analytical studies of capabilities and compression ratios of such pruned sub-networks are lacking. We theoretically study the performance of two pruning techniques (random and magnitude-based) on FCNs and CNNs. Given a target network {whose weights are independently sampled from appropriate distributions}, we provide a universal approach to bound the gap between a pruned and the target network in a probabilistic sense. The results establish that there exist pruned networks with expressive power within any specified bound from the target network.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.