2000 character limit reached
Spectral risk-based learning using unbounded losses (2105.04816v1)
Published 11 May 2021 in stat.ML and cs.LG
Abstract: In this work, we consider the setting of learning problems under a wide class of spectral risk (or "L-risk") functions, where a Lipschitz-continuous spectral density is used to flexibly assign weight to extreme loss values. We obtain excess risk guarantees for a derivative-free learning procedure under unbounded heavy-tailed loss distributions, and propose a computationally efficient implementation which empirically outperforms traditional risk minimizers in terms of balancing spectral risk and misclassification error.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.