Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

SOREL: A Stochastic Algorithm for Spectral Risks Minimization (2407.14618v1)

Published 19 Jul 2024 in math.OC and cs.LG

Abstract: The spectral risk has wide applications in machine learning, especially in real-world decision-making, where people are not only concerned with models' average performance. By assigning different weights to the losses of different sample points, rather than the same weights as in the empirical risk, it allows the model's performance to lie between the average performance and the worst-case performance. In this paper, we propose SOREL, the first stochastic gradient-based algorithm with convergence guarantees for the spectral risk minimization. Previous algorithms often consider adding a strongly concave function to smooth the spectral risk, thus lacking convergence guarantees for the original spectral risk. We theoretically prove that our algorithm achieves a near-optimal rate of $\widetilde{O}(1/\sqrt{\epsilon})$ in terms of $\epsilon$. Experiments on real datasets show that our algorithm outperforms existing algorithms in most cases, both in terms of runtime and sample complexity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com