Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Structural Information to Improve Point Line Visual-Inertial Odometry (2105.04064v2)

Published 10 May 2021 in cs.RO

Abstract: Leveraging line features can help to improve the localization accuracy of point-based monocular Visual-Inertial Odometry (VIO) system, as lines provide additional constraints. Moreover, in an artificial environment, some straight lines are parallel to each other. In this paper, we designed a VIO system based on points and straight lines, which divides straight lines into structural straight lines (that is, straight lines parallel to each other) and non-structural straight lines. In addition, unlike the orthogonal representation using four parameters to represent the 3D straight line, we only used two parameters to minimize the representation of the structural straight line and the non-structural straight line. Furthermore, we designed a straight line matching strategy based on sampling points to improve the efficiency and success rate of straight line matching. The effectiveness of our method is verified on both public datasets of EuRoc and TUM VI benchmark and compared with other state-of-the-art algorithms.

Citations (26)

Summary

We haven't generated a summary for this paper yet.