Fast stable finite difference schemes for nonlinear cross-diffusion
Abstract: The dynamics of cross-diffusion models leads to a high computational complexity for implicit difference schemes, turning them unsuitable for tasks that require results in real-time. We propose the use of two operator splitting schemes for nonlinear cross-diffusion processes in order to lower the computational load, and establish their stability properties using discrete $L2$ energy methods. Furthermore, by attaining a stable factorization of the system matrix as a forward-backward pass, corresponding to the Thomas algorithm for self-diffusion processes, we show that the use of implicit cross-diffusion can be competitive in terms of execution time, widening the range of viable cross-diffusion coefficients for \textit{on-the-fly} applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.