Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Test-Time Adaptation Toward Personalized Speech Enhancement: Zero-Shot Learning with Knowledge Distillation (2105.03544v1)

Published 8 May 2021 in eess.AS, cs.LG, and cs.SD

Abstract: In realistic speech enhancement settings for end-user devices, we often encounter only a few speakers and noise types that tend to reoccur in the specific acoustic environment. We propose a novel personalized speech enhancement method to adapt a compact denoising model to the test-time specificity. Our goal in this test-time adaptation is to utilize no clean speech target of the test speaker, thus fulfilling the requirement for zero-shot learning. To complement the lack of clean utterance, we employ the knowledge distillation framework. Instead of the missing clean utterance target, we distill the more advanced denoising results from an overly large teacher model, and use it as the pseudo target to train the small student model. This zero-shot learning procedure circumvents the process of collecting users' clean speech, a process that users are reluctant to comply due to privacy concerns and technical difficulty of recording clean voice. Experiments on various test-time conditions show that the proposed personalization method achieves significant performance gains compared to larger baseline networks trained from a large speaker- and noise-agnostic datasets. In addition, since the compact personalized models can outperform larger general-purpose models, we claim that the proposed method performs model compression with no loss of denoising performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sunwoo Kim (66 papers)
  2. Minje Kim (53 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.