Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Collaboration (2105.02569v3)

Published 6 May 2021 in stat.ML, cs.LG, and econ.EM

Abstract: We propose a new ensemble framework for supervised learning, called machine collaboration (MaC), using a collection of base machines for prediction tasks. Unlike bagging/stacking (a parallel & independent framework) and boosting (a sequential & top-down framework), MaC is a type of circular & interactive learning framework. The circular & interactive feature helps the base machines to transfer information circularly and update their structures and parameters accordingly. The theoretical result on the risk bound of the estimator from MaC reveals that the circular & interactive feature can help MaC reduce risk via a parsimonious ensemble. We conduct extensive experiments on MaC using both simulated data and 119 benchmark real datasets. The results demonstrate that in most cases, MaC performs significantly better than several other state-of-the-art methods, including classification and regression trees, neural networks, stacking, and boosting.

Summary

We haven't generated a summary for this paper yet.