Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Global Theory of Graded Manifolds (2105.02534v1)

Published 6 May 2021 in math.DG, math-ph, and math.MP

Abstract: A theory of graded manifolds can be viewed as a generalization of differential geometry of smooth manifolds. It allows one to work with functions which locally depend not only on ordinary real variables, but also on $\mathbb{Z}$-graded variables which can either commute or anticommute, according to their degree. To obtain a consistent global description of graded manifolds, one resorts to sheaves of graded commutative associative algebras on second countable Hausdorff topological spaces, locally isomorphic to a suitable "model space". This paper aims to build robust mathematical foundations of geometry of graded manifolds. Some known issues in their definition are resolved, especially the case where positively and negatively graded coordinates appear together. The focus is on a detailed exposition of standard geometrical constructions rather then on applications. Necessary excerpts from graded algebra and graded sheaf theory are included.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.