Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homological Algebra for Superalgebras of Differentiable Functions (1212.3745v1)

Published 16 Dec 2012 in math.AG, math.AT, math.DG, and math.QA

Abstract: This is the second in a series of papers laying the foundations for a differential graded approach to derived differential geometry (and other geometries in characteristic zero). In this paper, we extend the classical notion of a dg-algebra to define, in particular, the notion of a differential graded algebra in the world of C-infinity rings. The opposite of the category of differential graded C-infinity algebras contains the category of differential graded manifolds as a full subcategory. More generally, this notion of differential graded algebra makes sense for algebras over any (super) Fermat theory, and hence one also arrives at the definition of a differential graded algebra appropriate for the study of derived real and complex analytic manifolds and other variants. We go on to show that, for any super Fermat theory S which admits integration, a concept we define and show is satisfied by all important examples, the category of differential graded S-algebras supports a Quillen model structure naturally extending the classical one on differential graded algebras, both in the bounded and unbounded case (as well as differential algebras with no grading). Finally, we show that, under the same assumptions, any of these categories of differential graded S-algebras have a simplicial enrichment, compatible in a suitable sense with the model structure.

Summary

We haven't generated a summary for this paper yet.