Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enabling 3D Object Detection with a Low-Resolution LiDAR (2105.01765v2)

Published 4 May 2021 in cs.CV and cs.RO

Abstract: Light Detection And Ranging (LiDAR) has been widely used in autonomous vehicles for perception and localization. However, the cost of a high-resolution LiDAR is still prohibitively expensive, while its low-resolution counterpart is much more affordable. Therefore, using low-resolution LiDAR for autonomous driving is an economically viable solution, but the point cloud sparsity makes it extremely challenging. In this paper, we propose a two-stage neural network framework that enables 3D object detection using a low-resolution LiDAR. Taking input from a low-resolution LiDAR point cloud and a monocular camera image, a depth completion network is employed to produce dense point cloud that is subsequently processed by a voxel-based network for 3D object detection. Evaluated with KITTI dataset for 3D object detection in Bird-Eye View (BEV), the experimental result shows that the proposed approach performs significantly better than directly applying the 16-line LiDAR point cloud for object detection. For both easy and moderate cases, our 3D vehicle detection results are close to those using 64-line high-resolution LiDARs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lin Bai (34 papers)
  2. Yiming Zhao (51 papers)
  3. Xinming Huang (34 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.