Multivariate tempered stable additive subordination for financial models (2105.00844v3)
Abstract: We study a class of multivariate tempered stable distributions and introduce the associated class of tempered stable Sato subordinators. These Sato subordinators are used to build additive inhomogeneous processes by subordination of a multiparameter Brownian motion. The resulting process is additive and time inhomogeneous. Furthermore, these processes are associated with the distribution at unit time of a class of L\'evy process with good fit properties on fifinancial data. The main feature of the Sato subordinated Brownian motion is that it has time dependent correlation, whereas the L\'evy counterpart does not. We provide a numerical illustration of the correlation dynamics.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.