Papers
Topics
Authors
Recent
Search
2000 character limit reached

Detecting bid-rigging coalitions in different countries and auction formats

Published 1 May 2021 in econ.GN and q-fin.EC | (2105.00337v1)

Abstract: We propose an original application of screening methods using machine learning to detect collusive groups of firms in procurement auctions. As a methodical innovation, we calculate coalition-based screens by forming coalitions of bidders in tenders to flag bid-rigging cartels. Using Swiss, Japanese and Italian procurement data, we investigate the effectiveness of our method in different countries and auction settings, in our cases first-price sealed-bid and mean-price sealed-bid auctions. We correctly classify 90\% of the collusive and competitive coalitions when applying four machine learning algorithms: lasso, support vector machine, random forest, and super learner ensemble method. Finally, we find that coalition-based screens for the variance and the uniformity of bids are in all the cases the most important predictors according the random forest.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.