Detecting bid-rigging coalitions in different countries and auction formats (2105.00337v1)
Abstract: We propose an original application of screening methods using machine learning to detect collusive groups of firms in procurement auctions. As a methodical innovation, we calculate coalition-based screens by forming coalitions of bidders in tenders to flag bid-rigging cartels. Using Swiss, Japanese and Italian procurement data, we investigate the effectiveness of our method in different countries and auction settings, in our cases first-price sealed-bid and mean-price sealed-bid auctions. We correctly classify 90\% of the collusive and competitive coalitions when applying four machine learning algorithms: lasso, support vector machine, random forest, and super learner ensemble method. Finally, we find that coalition-based screens for the variance and the uniformity of bids are in all the cases the most important predictors according the random forest.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.