Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretable Semantic Photo Geolocation (2104.14995v2)

Published 30 Apr 2021 in cs.CV

Abstract: Planet-scale photo geolocalization is the complex task of estimating the location depicted in an image solely based on its visual content. Due to the success of convolutional neural networks (CNNs), current approaches achieve super-human performance. However, previous work has exclusively focused on optimizing geolocalization accuracy. Due to the black-box property of deep learning systems, their predictions are difficult to validate for humans. State-of-the-art methods treat the task as a classification problem, where the choice of the classes, that is the partitioning of the world map, is crucial for the performance. In this paper, we present two contributions to improve the interpretability of a geolocalization model: (1) We propose a novel semantic partitioning method which intuitively leads to an improved understanding of the predictions, while achieving state-of-the-art results for geolocational accuracy on benchmark test sets; (2) We introduce a metric to assess the importance of semantic visual concepts for a certain prediction to provide additional interpretable information, which allows for a large-scale analysis of already trained models. Source code and dataset are publicly available.

Citations (24)

Summary

We haven't generated a summary for this paper yet.