Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Practical Approach for Rate-Distortion-Perception Analysis in Learned Image Compression (2104.14836v1)

Published 30 Apr 2021 in eess.IV

Abstract: Rate-distortion optimization (RDO) of codecs, where distortion is quantified by the mean-square error, has been a standard practice in image/video compression over the years. RDO serves well for optimization of codec performance for evaluation of the results in terms of PSNR. However, it is well known that the PSNR does not correlate well with perceptual evaluation of images; hence, RDO is not well suited for perceptual optimization of codecs. Recently, rate-distortion-perception trade-off has been formalized by taking the Kullback-Leibner (KL) divergence between the distributions of the original and reconstructed images as a perception measure. Learned image compression methods that simultaneously optimize rate, mean-square loss, VGG loss, and an adversarial loss were proposed. Yet, there exists no easy approach to fix the rate, distortion or perception at a desired level in a practical learned image compression solution to perform an analysis of the trade-off between rate, distortion and perception measures. In this paper, we propose a practical approach to fix the rate to carry out perception-distortion analysis at a fixed rate in order to perform perceptual evaluation of image compression results in a principled manner. Experimental results provide several insights for practical rate-distortion-perception analysis in learned image compression.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ogun Kirmemis (2 papers)
  2. A. Murat Tekalp (31 papers)
Citations (5)