Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

A User-Guided Bayesian Framework for Ensemble Feature Selection in Life Science Applications (UBayFS) (2104.14787v3)

Published 30 Apr 2021 in cs.LG and stat.ME

Abstract: Feature selection represents a measure to reduce the complexity of high-dimensional datasets and gain insights into the systematic variation in the data. This aspect is of specific importance in domains that rely on model interpretability, such as life sciences. We propose UBayFS, an ensemble feature selection technique embedded in a Bayesian statistical framework. Our approach considers two sources of information: data and domain knowledge. We build a meta-model from an ensemble of elementary feature selectors and aggregate this information in a multinomial likelihood. The user guides UBayFS by weighting features and penalizing specific feature blocks or combinations, implemented via a Dirichlet-type prior distribution and a regularization term. In a quantitative evaluation, we demonstrate that our framework (a) allows for a balanced trade-off between user knowledge and data observations, and (b) achieves competitive performance with state-of-the-art methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.