Papers
Topics
Authors
Recent
Search
2000 character limit reached

Search Algorithms for Automated Hyper-Parameter Tuning

Published 29 Apr 2021 in cs.LG, cs.CY, and cs.PF | (2104.14677v1)

Abstract: Machine learning is a powerful method for modeling in different fields such as education. Its capability to accurately predict students' success makes it an ideal tool for decision-making tasks related to higher education. The accuracy of machine learning models depends on selecting the proper hyper-parameters. However, it is not an easy task because it requires time and expertise to tune the hyper-parameters to fit the machine learning model. In this paper, we examine the effectiveness of automated hyper-parameter tuning techniques to the realm of students' success. Therefore, we develop two automated Hyper-Parameter Optimization methods, namely grid search and random search, to assess and improve a previous study's performance. The experiment results show that applying random search and grid search on machine learning algorithms improves accuracy. We empirically show automated methods' superiority on real-world educational data (MIDFIELD) for tuning HPs of conventional machine learning classifiers. This work emphasizes the effectiveness of automated hyper-parameter optimization while applying machine learning in the education field to aid faculties, directors', or non-expert users' decisions to improve students' success.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.