Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a practical lip-to-speech conversion system using deep neural networks and mobile application frontend (2104.14467v1)

Published 29 Apr 2021 in cs.CV

Abstract: Articulatory-to-acoustic (forward) mapping is a technique to predict speech using various articulatory acquisition techniques as input (e.g. ultrasound tongue imaging, MRI, lip video). The advantage of lip video is that it is easily available and affordable: most modern smartphones have a front camera. There are already a few solutions for lip-to-speech synthesis, but they mostly concentrate on offline training and inference. In this paper, we propose a system built from a backend for deep neural network training and inference and a fronted as a form of a mobile application. Our initial evaluation shows that the scenario is feasible: a top-5 classification accuracy of 74% is combined with feedback from the mobile application user, making sure that the speaking impaired might be able to communicate with this solution.

Citations (2)

Summary

We haven't generated a summary for this paper yet.