Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TGV-based restoration of Poissonian images with automatic estimation of the regularization parameter (2104.14452v1)

Published 29 Apr 2021 in math.NA, cs.NA, and math.OC

Abstract: The problem of restoring images corrupted by Poisson noise is common in many application fields and, because of its intrinsic ill posedness, it requires regularization techniques for its solution. The effectiveness of such techniques depends on the value of the regularization parameter balancing data fidelity and regularity of the solution. Here we consider the Total Generalized Variation regularization introduced in [SIAM J. Imag. Sci, 3(3), 492-526, 2010], which has demonstrated its ability of preserving sharp features as well as smooth transition variations, and introduce an automatic strategy for defining the value of the regularization parameter. We solve the corresponding optimization problem by using a 3-block version of ADMM. Preliminary numerical experiments support the proposed approach.

Citations (2)

Summary

We haven't generated a summary for this paper yet.