Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Condensation-Net: Memory-Efficient Network Architecture with Cross-Channel Pooling Layers and Virtual Feature Maps (2104.14124v1)

Published 29 Apr 2021 in cs.CV and cs.AR

Abstract: "Lightweight convolutional neural networks" is an important research topic in the field of embedded vision. To implement image recognition tasks on a resource-limited hardware platform, it is necessary to reduce the memory size and the computational cost. The contribution of this paper is stated as follows. First, we propose an algorithm to process a specific network architecture (Condensation-Net) without increasing the maximum memory storage for feature maps. The architecture for virtual feature maps saves 26.5% of memory bandwidth by calculating the results of cross-channel pooling before storing the feature map into the memory. Second, we show that cross-channel pooling can improve the accuracy of object detection tasks, such as face detection, because it increases the number of filter weights. Compared with Tiny-YOLOv2, the improvement of accuracy is 2.0% for quantized networks and 1.5% for full-precision networks when the false-positive rate is 0.1. Last but not the least, the analysis results show that the overhead to support the cross-channel pooling with the proposed hardware architecture is negligible small. The extra memory cost to support Condensation-Net is 0.2% of the total size, and the extra gate count is only 1.0% of the total size.

Citations (7)

Summary

We haven't generated a summary for this paper yet.