Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAGMA: An Optimization Framework for Mapping Multiple DNNs on Multiple Accelerator Cores (2104.13997v3)

Published 28 Apr 2021 in cs.AR and cs.AI

Abstract: As Deep Learning continues to drive a variety of applications in edge and cloud data centers, there is a growing trend towards building large accelerators with several sub-accelerator cores/chiplets. This work looks at the problem of supporting multi-tenancy on such accelerators. In particular, we focus on the problem of mapping jobs from several DNNs simultaneously on an accelerator. Given the extremely large search space, we formulate the search as an optimization problem and develop an optimization framework called M3E. In addition, we develop a specialized optimization algorithm called MAGMA with custom operators to enable structured sample-efficient exploration. We quantitatively compare MAGMA with several state-of-the-art methods, black-box optimization, and reinforcement learning methods across different accelerator settings (large/small accelerators) and different sub-accelerator configurations (homogeneous/heterogeneous), and observe MAGMA can consistently find better mappings.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com