Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Deep Manifold Attributed Graph Embedding (2104.13048v1)

Published 27 Apr 2021 in cs.LG and cs.AI

Abstract: Unsupervised attributed graph representation learning is challenging since both structural and feature information are required to be represented in the latent space. Existing methods concentrate on learning latent representation via reconstruction tasks, but cannot directly optimize representation and are prone to oversmoothing, thus limiting the applications on downstream tasks. To alleviate these issues, we propose a novel graph embedding framework named Deep Manifold Attributed Graph Embedding (DMAGE). A node-to-node geodesic similarity is proposed to compute the inter-node similarity between the data space and the latent space and then use Bergman divergence as loss function to minimize the difference between them. We then design a new network structure with fewer aggregation to alleviate the oversmoothing problem and incorporate graph structure augmentation to improve the representation's stability. Our proposed DMAGE surpasses state-of-the-art methods by a significant margin on three downstream tasks: unsupervised visualization, node clustering, and link prediction across four popular datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.