Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Points2Sound: From mono to binaural audio using 3D point cloud scenes (2104.12462v3)

Published 26 Apr 2021 in cs.SD, cs.CV, and eess.AS

Abstract: For immersive applications, the generation of binaural sound that matches its visual counterpart is crucial to bring meaningful experiences to people in a virtual environment. Recent studies have shown the possibility of using neural networks for synthesizing binaural audio from mono audio by using 2D visual information as guidance. Extending this approach by guiding the audio with 3D visual information and operating in the waveform domain may allow for a more accurate auralization of a virtual audio scene. We propose Points2Sound, a multi-modal deep learning model which generates a binaural version from mono audio using 3D point cloud scenes. Specifically, Points2Sound consists of a vision network and an audio network. The vision network uses 3D sparse convolutions to extract a visual feature from the point cloud scene. Then, the visual feature conditions the audio network, which operates in the waveform domain, to synthesize the binaural version. Results show that 3D visual information can successfully guide multi-modal deep learning models for the task of binaural synthesis. We also investigate how 3D point cloud attributes, learning objectives, different reverberant conditions, and several types of mono mixture signals affect the binaural audio synthesis performance of Points2Sound for the different numbers of sound sources present in the scene.

Citations (6)

Summary

We haven't generated a summary for this paper yet.