Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making Generated Images Hard To Spot: A Transferable Attack On Synthetic Image Detectors (2104.12069v2)

Published 25 Apr 2021 in cs.CV and eess.IV

Abstract: Visually realistic GAN-generated images have recently emerged as an important misinformation threat. Research has shown that these synthetic images contain forensic traces that are readily identifiable by forensic detectors. Unfortunately, these detectors are built upon neural networks, which are vulnerable to recently developed adversarial attacks. In this paper, we propose a new anti-forensic attack capable of fooling GAN-generated image detectors. Our attack uses an adversarially trained generator to synthesize traces that these detectors associate with real images. Furthermore, we propose a technique to train our attack so that it can achieve transferability, i.e. it can fool unknown CNNs that it was not explicitly trained against. We evaluate our attack through an extensive set of experiments, where we show that our attack can fool eight state-of-the-art detection CNNs with synthetic images created using seven different GANs, and outperform other alternative attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xinwei Zhao (6 papers)
  2. Matthew C. Stamm (17 papers)
Citations (4)
Youtube Logo Streamline Icon: https://streamlinehq.com