Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Accurate and Efficient Large-scale Regression Method through Best Friend Clustering (2104.10819v1)

Published 22 Apr 2021 in cs.LG and cs.DC

Abstract: As the data size in Machine Learning fields grows exponentially, it is inevitable to accelerate the computation by utilizing the ever-growing large number of available cores provided by high-performance computing hardware. However, existing parallel methods for clustering or regression often suffer from problems of low accuracy, slow convergence, and complex hyperparameter-tuning. Furthermore, the parallel efficiency is usually difficult to improve while striking a balance between preserving model properties and partitioning computing workloads on distributed systems. In this paper, we propose a novel and simple data structure capturing the most important information among data samples. It has several advantageous properties supporting a hierarchical clustering strategy that is irrelevant to the hardware parallelism, well-defined metrics for determining optimal clustering, balanced partition for maintaining the compactness property, and efficient parallelization for accelerating computation phases. Then we combine the clustering with regression techniques as a parallel library and utilize a hybrid structure of data and model parallelism to make predictions. Experiments illustrate that our library obtains remarkable performance on convergence, accuracy, and scalability.

Summary

We haven't generated a summary for this paper yet.