Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scene-aware Far-field Automatic Speech Recognition (2104.10757v1)

Published 21 Apr 2021 in eess.AS and cs.SD

Abstract: We propose a novel method for generating scene-aware training data for far-field automatic speech recognition. We use a deep learning-based estimator to non-intrusively compute the sub-band reverberation time of an environment from its speech samples. We model the acoustic characteristics of a scene with its reverberation time and represent it using a multivariate Gaussian distribution. We use this distribution to select acoustic impulse responses from a large real-world dataset for augmenting speech data. The speech recognition system trained on our scene-aware data consistently outperforms the system trained using many more random acoustic impulse responses on the REVERB and the AMI far-field benchmarks. In practice, we obtain 2.64% absolute improvement in word error rate compared with using training data of the same size with uniformly distributed reverberation times.

Citations (1)

Summary

We haven't generated a summary for this paper yet.