Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GraphSVX: Shapley Value Explanations for Graph Neural Networks (2104.10482v2)

Published 18 Apr 2021 in cs.LG

Abstract: Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data due to the incorporation of graph structure into the learning of node representations, which renders their comprehension challenging. In this paper, we first propose a unified framework satisfied by most existing GNN explainers. Then, we introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs. GraphSVX is a decomposition technique that captures the "fair" contribution of each feature and node towards the explained prediction by constructing a surrogate model on a perturbed dataset. It extends to graphs and ultimately provides as explanation the Shapley Values from game theory. Experiments on real-world and synthetic datasets demonstrate that GraphSVX achieves state-of-the-art performance compared to baseline models while presenting core theoretical and human-centric properties.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alexandre Duval (10 papers)
  2. Fragkiskos D. Malliaros (35 papers)
Citations (77)

Summary

We haven't generated a summary for this paper yet.