Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GNNAnatomy: Systematic Generation and Evaluation of Multi-Level Explanations for Graph Neural Networks (2406.04548v2)

Published 6 Jun 2024 in cs.LG, cs.IR, and cs.SI

Abstract: Graph Neural Networks (GNNs) excel in machine learning tasks involving graphs, such as node classification, graph classification, and link prediction. However, explaining their decision-making process is challenging due to the complex transformations GNNs perform by aggregating relational information from graph topology. Existing methods for explaining GNNs face key limitations: (1) lack of flexibility in generating explanations at varying levels, (2) difficulty in identifying unique substructures relevant to class differentiation, and (3) little support to ensure the trustworthiness of explanations. To address these challenges, we introduce GNNAnatomy, a visual analytics system designed to generate and evaluate multi-level GNN explanations for graph classification tasks. GNNAnatomy uses graphlets, primitive graph substructures, to identify the most critical substructures in a graph class by analyzing the correlation between GNN predictions and graphlet frequencies. These correlations are presented interactively for user-selected group of graphs through our visual analytics system. To further validate top-ranked graphlets, we measure the change in classification confidence after removing each graphlet from the original graph. We demonstrate the effectiveness of GNNAnatomy through case studies on synthetic and real-world graph datasets from sociology and biology domains. Additionally, we compare GNNAnatomy with state-of-the-art explainable GNN methods to showcase its utility and versatility.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)

Summary

We haven't generated a summary for this paper yet.