Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

HDR-Fuzz: Detecting Buffer Overruns using AddressSanitizer Instrumentation and Fuzzing (2104.10466v1)

Published 21 Apr 2021 in cs.SE, cs.SY, and eess.SY

Abstract: Buffer-overruns are a prevalent vulnerability in software libraries and applications. Fuzz testing is one of the effective techniques to detect vulnerabilities in general. Greybox fuzzers such as AFL automatically generate a sequence of test inputs for a given program using a fitness-guided search process. A recently proposed approach in the literature introduced a buffer-overrun specific fitness metric called "headroom", which tracks how close each generated test input comes to exposing the vulnerabilities. That approach showed good initial promise, but is somewhat imprecise and expensive due to its reliance on conservative points-to analysis. Inspired by the approach above, in this paper we propose a new ground-up approach for detecting buffer-overrun vulnerabilities. This approach uses an extended version of ASAN (Address Sanitizer) that runs in parallel with the fuzzer, and reports back to the fuzzer test inputs that happen to come closer to exposing buffer-overrun vulnerabilities. The ASAN-style instrumentation is precise as it has no dependence on points-to analysis. We describe in this paper our approach, as well as an implementation and evaluation of the approach.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.