Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing the Effect of Persistent Asset Switches on a Class of Hybrid-Inspired Optimization Algorithms (2104.10307v1)

Published 21 Apr 2021 in eess.SY and cs.SY

Abstract: Convex optimization challenges are currently pervasive in many science and engineering domains. In many applications of convex optimization, such as those involving multi-agent systems and resource allocation, the objective function can persistently switch during the execution of an optimization algorithm. Motivated by such applications, we analyze the effect of persistently switching objectives in continuous-time optimization algorithms. In particular, we take advantage of existing robust stability results for switched systems with distinct equilibria and extend these results to systems described by differential inclusions, making the results applicable to recent optimization algorithms that employ differential inclusions for improving efficiency and/or robustness. Within the framework of hybrid systems theory, we provide an accurate characterization, in terms of Omega-limit sets, of the set to which the optimization dynamics converge. Finally, by considering the switching signal to be constrained in its average dwell time, we establish semi-global practical asymptotic stability of these sets with respect to the dwell-time parameter.

Citations (2)

Summary

We haven't generated a summary for this paper yet.