Decidability and Complexity in Weakening and Contraction Hypersequent Substructural Logics
Abstract: We establish decidability for the infinitely many axiomatic extensions of the commutative Full Lambek logic with weakening FLew (i.e. IMALLW) that have a cut-free hypersequent proof calculus (specifically: every analytic structural rule extension). Decidability for the corresponding extensions of its contraction counterpart FLec was established recently but their computational complexity was left unanswered. In the second part of this paper, we introduce just enough on length functions for well-quasi-orderings and the fast-growing complexity classes to obtain complexity upper bounds for both the weakening and contraction extensions. A specific instance of this result yields the first complexity bound for the prominent fuzzy logic MTL (monoidal t-norm based logic) providing an answer to a long-standing open problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.