Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coarse-to-Fine Searching for Efficient Generative Adversarial Networks (2104.09223v1)

Published 19 Apr 2021 in cs.CV

Abstract: This paper studies the neural architecture search (NAS) problem for developing efficient generator networks. Compared with deep models for visual recognition tasks, generative adversarial network (GAN) are usually designed to conduct various complex image generation. We first discover an intact search space of generator networks including three dimensionalities, i.e., path, operator, channel for fully excavating the network performance. To reduce the huge search cost, we explore a coarse-to-fine search strategy which divides the overall search process into three sub-optimization problems accordingly. In addition, a fair supernet training approach is utilized to ensure that all sub-networks can be updated fairly and stably. Experiments results on benchmarks show that we can provide generator networks with better image quality and lower computational costs over the state-of-the-art methods. For example, with our method, it takes only about 8 GPU hours on the entire edges-to-shoes dataset to get a 2.56 MB model with a 24.13 FID score and 10 GPU hours on the entire Urban100 dataset to get a 1.49 MB model with a 24.94 PSNR score.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jiahao Wang (88 papers)
  2. Han Shu (14 papers)
  3. Weihao Xia (26 papers)
  4. Yujiu Yang (155 papers)
  5. Yunhe Wang (145 papers)
Citations (5)